
FREOPEN 1
ID: 743-BSI | Version: 3 | Date: 5/16/08 2:39:21 PM

FREOPEN
Vulnerable to TOCTOU issues

Sean Barnum, Cigital, Inc. [vita1]

Copyright © 2007 Cigital, Inc.

2007-03-22

Part "Original Cigital Coding Rule in XML"
Mime-type: text/xml, size: 8015 bytes

Attack Category • Path spoofing or confusion problem

Vulnerability Category • Indeterminate File/Path

• TOCTOU - Time of Check, Time of Use

Software Context • File Management

• File Creation

• File I/O

Location • stdio.h

Description The freopen() function first attempts to flush the
stream and close any file descriptor associated
with stream. Failure to flush or close the file
successfully is ignored. The error and end-of-file
indicators for the stream are cleared.

The freopen() function opens the file whose
pathname is the string pointed to by filename and
associates the stream pointed to by stream with it.
The mode argument is used just as in fopen().

freopen() is vulnerable to TOCTOU attacks. A call
to freopen() should be flagged if the first argument
(the directory or file name) is used earlier in a check-
category call.

On Windows platforms the APIs _freopen,
_tfreopen, and _wfreopen are synonymous with
freopen.

Method of Attack The key issue with respect to TOCTOU
vulnerabilities is that programs make assumptions
about atomicity of actions. It is assumed that
checking the state or identity of a targeted resource
followed by an action on that resource is all one
action. In reality, there is a period of time between
the check and the use that allows either an attacker to
intentionally or another interleaved process or thread
to unintentionally change the state of the targeted
resource and yield unexpected and undesired results.

1. http://buildsecurityin.us-cert.gov/bsi-rules/35-BSI.html (Barnum, Sean)

http://buildsecurityin.us-cert.gov/bsi-rules/35-BSI.html

FREOPEN 2
ID: 743-BSI | Version: 3 | Date: 5/16/08 2:39:21 PM

The freopen() call is a use-category call, which when
preceded by a check-category call can be indicative
of a TOCTOU vulnerability.

A TOCTOU attack in regards to freopen() can occur
when

a. A check for the existence of the file or a non-fd
reference (pathname) to the filename occurs

b. The actual call to freopen occurs.

Between a and b, an attacker could, for example, link
the referenced file to a known file. The subsequent
freopen() call would have an unintended effect or
impact.

Exception Criteria

Solutions Solution
Applicability

Solution
Description

Solution
Efficacy

Generally
applie tso any
freopen() call.

Translate
freopen()
to fdopen if
possible.

Effective.

Generally
applie tso any
freopen() call.

Translate
freopen()
to fdopen if
possible.

Effective.

Generally
applies to any
freopen() call.

The most basic
advice for
TOCTOU
vulnerabilities
is to not
perform a check
before the use.
This does not
resolve the
underlying
issue of the
execution of
a function on
a resource
whose state and
identity cannot
be assured, but
it does help
to limit the
false sense of
security given
by the check.

Does not
resolve the
underlying
vulnerability
but limits the
false sense of
security given
by the check.

Generally
applies to any
freopen() call.

Limit the
interleaving
of operations
on files from

Does not
eliminate the
underlying
vulnerability

FREOPEN 3
ID: 743-BSI | Version: 3 | Date: 5/16/08 2:39:21 PM

multiple
processes.

but can help
make it more
difficult to
exploit.

Generally
applies to any
freopen() call.

Limit the spread
of time (cycles)
between the
check and use
of a resource.

Does not
eliminate the
underlying
vulnerability
but can help
make it more
difficult to
exploit.

Signature Details FILE *freopen(const char *filename, const char
*mode, FILE *stream);
FILE *fopen(const char *path, const char *mode);
FILE *fdopen(int fildes, const char *mode);

Examples of Incorrect Code int main () {

struct stat stats;

stat(path, &stats);
...
freopen ("myfile.txt","w",stdout);
printf ("This sentence is
redirected to a file.");
fclose (stdout);
return 0;
}

Examples of Corrected Code /* freopen example: redirecting stdout */
/* no check performed */

int main ()
{
freopen
("myfile.txt","w",stdout);
printf ("This sentence is
redirected to a file.");
fclose (stdout);
return 0;
}

/* fdopen version */

main() {
char fn[]="fdopen.file";
FILE *stream;
int fd;

if ((fd = creat(fn, S_IWUSR)) < 0)
perror("creat() error");
else {
if ((stream = fdopen(fd, "w")) ==
NULL) {
perror("fdopen() error");

FREOPEN 4
ID: 743-BSI | Version: 3 | Date: 5/16/08 2:39:21 PM

close(fd);
}
else {
fputs("This is a test", stream);
fclose(stream);
}
unlink(fn);
}
}

Source References • Viega, John & McGraw, Gary. Building Secure
Software: How to Avoid Security Problems
the Right Way. Boston, MA: Addison-Wesley
Professional, 2001, ISBN: 020172152X, ch. 9

• freopen() man page

• Microsoft Developer Network Library

Recommended Resource

Discriminant Set Operating System • UNIX

Languages • C

• C++

Cigital, Inc. Copyright
Copyright © Cigital, Inc. 2005-2007. Cigital retains copyrights to this material.

Permission to reproduce this document and to prepare derivative works from this document for internal use
is granted, provided the copyright and “No Warranty” statements are included with all reproductions and
derivative works.

For information regarding external or commercial use of copyrighted materials owned by Cigital, including

information about “Fair Use,” contact Cigital at copyright@cigital.com1.

The Build Security In (BSI) portal is sponsored by the U.S. Department of Homeland Security (DHS),
National Cyber Security Division. The Software Engineering Institute (SEI) develops and operates BSI. DHS
funding supports the publishing of all site content.

1. mailto:copyright@cigital.com

mailto:copyright@cigital.com

